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Abstract

This work presents a method to automate simple aspects of geologic image

analysis during space exploration. Automated image analysis onboard the space-

craft can make operations more efficient by generating compressed maps of long

traverses for summary downlink. It can also enable immediate automatic responses

to science targets of opportunity, improving the quality of targeted measurements

collected with each command cycle. In addition, automated analyses on Earth can

process large image catalogs, such as the growing database of Mars surface im-

ages, permitting more timely and quantitative summaries that inform tactical mis-

sion operations. We present TextureCam, a new instrument incorporating real time

image analysis to produce texture-sensitive classifications of geologic surfaces in

mesoscale scenes. A series of tests at the Cima Volcanic Fields in the Mojave

Desert, California demonstrate mesoscale surficial mapping at two distinct sites of

geologic interest.

1 Introduction

To date, ongoing Mars rover missions have accumulated an archive of just under 380,000

microscopic and macroscopic images: 309,680 over 10 years for the Mars Exploration

Rover mission (MER) and 68,131 for the Mars Science Laboratory (MSL) in a year.

This is the result of increased mission survivability, mobility, and autonomy. It can

be assumed that archives will grow even larger in future missions due to continuing
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progress in technology and instrumentation [Bakambu et al., 2012, Furgale and Bar-

foot, 2010], as well as in science operation productivity [Deans et al., 2012]. Standard

now on Mars rovers [Squyres et al., 2003, Grotzinger et al., 2012], and planned for

the Mars 2020 mission [Mustard et al., 2013], multi-scale imaging allows a science

team to generate powerful nested imagery to characterize morphological, mineralogi-

cal, and compositional domains to sub-meter resolution, while simultaneously mapping

them on a scale of tens of kilometers. However, analysis bottlenecks, such as limited

downlink bandwidth and limited analyst time, can prevent missions from fully utilizing

these data for tactical operations planning. The present work describes image analysis

algorithms and instrument hardware that can automate rudimentary aspects of geologic

analysis both on the ground and onboard spacecraft. Simple automatic visual process-

ing of these images can improve the efficiency of mission operations as well as the

ultimate science yield.

A primary challenge for Mars surface mission operations is the limited time the sci-

ence team can afford to spend daily on data analysis. The team must quickly analyze

data downlinks, while simultaneously deciding on the next science targets and design-

ing traverse plans - all within the handful of hours before the next uplink window. Both

targets and traverses are chosen based on the highest priorities of the science team.

In most cases, a science team will preferentially collect and analyze the data that best

support the primary mission science objectives (e.g., for high impact publications and

communications), and will only later have time for an in-depth review of the archived

data. As a result, it often takes many years for data archives to be fully investigated.

Some observations may never be fully analyzed, creating a potential gap in mission

productivity. The earlier and more rigorous the quantitative analysis, the better in-

formed later exploration decisions can be. Timely analysis is especially critical for

rover missions, since there is little chance of revisiting sites once the mission is over.

Further, missions rarely return to previously investigated targets during mission opera-

tions, due to a general perception that a mission only makes progress if it goes forward

— perhaps to explore as many diverse environments as possible in a limited, unknown

mission lifespan. This is, so far, a clear distinction between robotic exploration and

terrestrial fieldwork, where revisiting sites and resampling are not only common but

often critical.

In such context, the use of efficient autonomous analytical image techniques can

increase the scientific impact of large archives during operations. It could be particu-

larly valuable for a mission such as a Mars 2020 mission, a central goal of which will

be to seek signs of early life on Mars and to identify a high-value subset of samples to

prepare for a later Sample Return mission. More than for any previous mission, this

objective requires (a) an especially careful contextual mapping of large traversed ar-

eas in order to understand the stratigraphic context of samples and discoveries; (b) the

ability to investigate and interpret as critical or non-critical numerous sedimentary land-

forms and their remnants (from residual mesoscale features to rocks and particulates),

whether layered or non-layered, and in situ or not; (c) the capability to identify textu-

ral groups that may bear evidence of potential fossil biogenic constructs from others

which may not; and (d) the analytical power to investigate the textural, morphological,

and compositional elements of a scene that can provide information on the energy of

transportation and on depositional environments in the explored region.
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Automated image analysis can also improve exploration efficiency by performing

simple data interpretation onboard the spacecraft [Gulick et al., 2001, Woods et al.,

2009, Woods et al., 2011]. Missions such as the Mars 2020 mission may spend a

considerable fraction of the mission performing long drives and reconnaissance, pass-

ing through terrain which has only been seen previously from orbit. It is important

that missions retain the flexibility to respond to targets of opportunity, deploying tar-

geted remote sensing or contact instruments as needed without stalling the mission or

incurring the delay of an extra command cycle. Onboard image analysis allows the

spacecraft to respond immediately to these unanticipated targets, for example by di-

recting high resolution cameras or targeted spectroscopy at novel rocks or stratigraphic

features [McGuire et al., 2010]. This idea was the core of the AEGIS system, which

provided computer vision for automatic science feature selection by the Mars Explo-

ration Rover Opportunity [Estlin et al., 2012]. A simple visual analysis can also allow

more effective targeted measurements upon arrival at a destination outcrop. Specifi-

cally, automatic mesoscale maps can indicate the principal units of material for a rep-

resentative remote measurement. The same analysis can also show good locations for

contact sensing that are free of dust or fractures. These simple image analyses can save

critical command cycles and latency required for Earth operators to micromanage each

approach, surface evaluation, and placement maneuver. Finally, surface classification

products can be downlinked to provide information about terrain the rover has passed

when bandwidth constraints prevent downlinking complete images. In these ways, au-

tomated image analysis offers a path to address key operations bottlenecks and improve

the science return of the mission over its finite operational lifetime.

The following sections present TextureCam, an instrument that incorporates built-

in automatic image analysis. The techniques we describe can improve the analytical

power and decision making of future missions by allowing (1) surficial mapping over

much larger area than currently possible, including maps produced for tactical deci-

sions during science operations, and (2) onboard automated mapping that will make

autonomous planetary rovers more efficient. To address the second goal we have built

this capability into embedded sensor hardware. The result is a camera system that can

classify surfaces in real time - a smart instrument that we demonstrated in field trials

at relevant geologic sites in the Cima Volcanic Fields of the Mojave Desert, CA. These

tests show the feasibility of real-time image analysis and provide a rough picture of

expected system performance for some simple surface classification tasks. This work

focuses on real-time image analysis in mesoscale scenes, which we define as contain-

ing features generally greater than 64 mm in size (anything smaller falls into “gravel”

or “sediment” category). Automatic classification of rocks on the microscopic scale

has also shown good results [Mlynarczuk et al., 2013].

2 Approach

This section describes our technical approach, beginning with a brief description of the

image analysis algorithm and then explaining our instrument hardware implementation.
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2.1 Algorithm

We formulate the problem of geologic image analysis as pixel classification in which

the system categorizes image regions based on predefined labels. This does not capture

all geologic image analysis tasks, but we find it to be a general and flexible formulation

that can accommodate many or most of the stated objectives. The pixel categories

may represent geologic content such as layering [Thompson et al., 2011, Wagstaff

et al., 2013], rock surfaces [Wagstaff et al., 2013, Francis et al., 2014], and particle

sizes. Alternatively they could involve non-geologic attributes like illumination and

shadow [Foil et al., 2013] or operations objectives such as identifying physical sur-

faces in good condition for contact sensing [Wagstaff et al., 2013]. This formulation

is therefore broad enough to encompass a wide range of autonomous activities and

image analyses in support of long-range traverse science. For example, simple post-

processing applied to pixel maps has been used for selective data return [Thompson

et al., 2008], target selection for opportunistic instrument deployment [Estlin et al.,

2012], and region-of-interest compression [Wagstaff et al., 2004].

Formally, the class of a pixel is represented by an unknown variable y. Given

a vector of image attributes x in the vicinity of a pixel, the goal of the analysis is

to determine the probability distribution of classes, P(y|x). Attributes could be raw

pixel values, average intensities of image subregions or even the responses of a filter

bank [Shotton et al., 2008]. Here, we wish to capture local spatial context and texture,

so we form attributes based on the statistics of small image patches. Specifically we

apply simple arithmetic operations to pixels in the local neighborhood of the pixel to

be classified. Similar to work by [Shotton et al., 2008], each attribute is the result

of an operation applied to two test locations at given spatial positions relative to the

classified pixel. In this work, the window is 31 pixels wide. Legal operations include

the sum, difference, absolute difference, and ratio. Many thousands of attributes are

possible using this recipe, and together they provide a rich description of the visible and

spectral appearance of a small image patch. The goal of the analysis is to determine the

posterior class probability given these features. Applying this process to each location

in the image produces a map of the geologic surfaces in the scene.

We use a statistical machine learning approach, estimating P(y|x) from a repre-

sentative set of training images using a random forest model [Breiman, 2001, Shotton

et al., 2008]. The random forest is a collection of independent weaker models known

as decision trees. Each decision tree is trained using a separate random subset of data

and produces a separate classification solution. After all decision trees have given an

answer for the pixel, these answers are averaged to form the final classification predic-

tion.

Each decision tree is represented as a branching binary graph of nodes (Figure 1).

Each node performs a threshold test on a specific attribute xi ∈ R of the pixel to be

classified. These attributes are generally simple arithmetic operations applied to two

other pixels at specific relative locations. For example, an attribute might be a sum

or ratio of two locations within a small rectangular neighborhood. One compares the

result of this operation to a predetermined threshold τ . Based on the result, control

then descends left or right down the decision tree. The process repeats at each new

node, ultimately leading to a classification decision at a leaf node. Since the decision
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is a composite of many attribute tests, the tree can model the complex visible structure

and texture of the image patch.

Each tree finds a different solution. The majority classification from all trees forms

the overall class prediction. Additionally, pixel posterior class distributions are stored

at each leaf, so that the system can produce posterior classification probabilities P(y|x).
This indicates the system’s confidence in the classification result, and can be used to

exclude low-confidence or ambiguous regions. It can also flag anomalous areas that

are different from materials seen in the training data [Foil et al., 2013].

The training procedure requires an analyst to supply labeled data in the form of des-

ignated image regions for each class. One strategy is to use an image editing program

to “paint” over the pixels, where different colors signify different surface classes. It is

not necessary that the entire image be labeled; usually a few representative exemplars

are sufficient, and the entire process requires just a few minutes. We can duplicate

the training images and labels using different rotational transformations to grow the

training set and improve the invariance of the result to orientation. Then, an automated

decision forest learning procedure assigns a subset of training pixels to each decision

tree and grows each tree from the root down. At each iteration, the training procedure

defines the test at each node to be the one which splits the remaining dataset into the

most well separated populations, with respect to the pixel labels. The specific splitting

criterion we employed maximizes information gain with respect to the posterior class

distribution. In this study, we used a single labeled image in our training episodes, thus

demonstrating the performance of the algorithm with a small training set.

The random forest model has several beneficial properties. First, each tree’s cal-

culation is independent so the algorithm is highly scalable, and degrades gracefully

with the number of trees and the number of nodes per tree. This provides a convenient

means for designers to trade between execution speed and accuracy. Second, each tree

requires just a few arithmetic operations so the algorithm can be made quite fast. Third,

training the trees on separate random subsets of the data promotes good generalization

performance, because it avoids the idiosyncrasies of any single subset. We did not ex-

perience any problems with local minima, and classifier performance was robust across

a wide range of training parameters. For further details on the forest training process,

we refer the reader to previous work on decision trees [Breiman, 2001, Shotton et al.,

2008, Wagstaff et al., 2013].

2.2 Instrument Architecture

The physical system instantiates this algorithm in a hardware testbed capable of real

time automatic surface mapping. The TextureCam instrument consists of three main

components: the cameras, the data processing unit (DPU), and a computer (Figure 2).

The cameras and the computer are unmodified commercial products, while the DPU

is based on a commercial field programmable gate array (FPGA) development board

with custom-built interface electronics and packaging.

We use two 3CCD Hitachi HV-F202SCL color cameras (the second camera will be

integrated in the future). Each camera has three internal image sensors with filters for

measuring red, green, and blue wavelengths. This configuration results in images with

better precision than cameras in a 1CCD configuration as each pixel is a true sense of
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FIG. 1. Pixel classification algorithm concept

FIG. 2. TextureCam instrument concept. During the 2013 field test, we used only one

camera; the second camera (for stereo vision) will be integrated for our next field test

in 2014.
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FIG. 3. Spectral response of the Hitachi 3CCD HV-F202SCL camera (left) as com-

pared to a similar 1CCD camera, the KP-FD202SCL (right). The individual color

bands have sharper cut offs in the 3CCD configuration [Hitachi, 2013].

its corresponding primary color. The high-fidelity images ensure the algorithm receives

a very accurate representation of the scene to be classified. In contrast, a 1CCD camera

has a single image detector with, for example, a Bayer mosaic filter. Images recorded in

this configuration need to be passed through a demosaicing algorithm to extrapolate the

red, green, and blue values. The spectral response of the Bayer mosaic filter typically

shows greater overlap in the color bands, resulting in more cross talk between the pixels

and a lower dynamic range than a 3CCD camera (Figure 3).

The cameras connect to the DPU via a Mini Camera Link interface, a high speed,

serialized, low-voltage differential signaling (LVDS) standard commonly used in ma-

chine vision applications. This interface adapter is attached to a Xilinx ML507 FPGA

Development Board. The data acquisition logic, the command/control of the cameras,

and the random forest classifier are implemented on a Virtex-5 FPGA1. Our initial pro-

totype performs the classification using an embedded Power-PC processor (inside the

FPGA), but the random forest is well suited for an efficient logic-only implementation

since it is highly parallelizable: each pixel can be classified independently of all others

in the image. Time-sensitive portions of the algorithm will be ported to the FPGA logic

for the next field test. The goal is to achieve a classification output rate of 1 frame per

second.

The output from the DPU is a data stream with both raw images and the classifi-

cation results. This is sent over Ethernet as UDP packets in a direct connection to a

computer which captures, displays, and stores this data. A timestamp along with GPS

coordinates is also recorded. While the first field test only utilized one camera, the

next expedition will add a second camera and stereo image processing (performed on

the computer). A WiFi network is used to connect field users to the computer in order

to control the instrument, view raw and processed data, as well as perform training

for new classifiers. This multi-user collaborative environment has proven to be very

efficient in our first field test.

1This FPGA was selected because a radiation-hardened version in the same family is available, which

will ease the transition to a flight instrument implementation for a future planetary rover.
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FIG. 4. The TextureCam single-camera field instrument consists of a tripod-mounted

camera with sunshade (upper inset) and a backpack-mounted DPU and control com-

puter (lower inset).

2.3 Field Mobility

We aim to evaluate this system in a range of analogue field environments, which de-

mands a portable, rugged and fully self-sufficient prototype. To ease in transportation

and for increased field mobility, the instrument is mounted on a pair of hard-frame

backpacks (Figure 4). One backpack holds a gasoline generator, providing power for

all of the electronics and user laptops. The other backpack holds the DPU, computer,

cabling, cameras, and spare gasoline canisters. Once a field site is selected, the back-

packs are placed on the ground, the generator activated, connections are made to the

instrument, and the camera is placed on a tripod. The whole process takes about five

minutes. An aluminum shield with a solar-powered fan protects the camera from over-

heating in direct sunlight, and an umbrella provides a fashionable dust cover and shade

for the instrument electronics.

2.4 User Interface

All control of the TextureCam instrument is handled via a graphical user interface run-

ning on the computer and visible to all field users over a WiFi network connection

(Figure 5). The interface allows the user to select which classifier to use from a set

of classifiers pre-loaded on a memory card in the DPU. Commanding the instrument

to acquire an image instructs the DPU to record a snapshot from the cameras, run the
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FIG. 5. The instrument is controlled through a graphical user interface over a wireless

connection. The top row in the interface shows the raw image from the cameras looking

at a striped training target. The bottom row shows the CPU-processed result (left)

and FPGA-processed result (right). The system recognizes the striped texture of the

training target, with warmer colors corresponding to a higher probability for that class.

A control bar, with buttons and indicators for temperature and GPS coordinates, is

present at the bottom of the frame.

classifier on the raw image, and send the raw and processed image to the computer,

which displays them in the user interface window. The computer (CPU) also runs the

classification processing on the received raw image, allowing for an immediate visual

comparison between CPU processing and FPGA processing. The “save” command in-

structs the DPU to transmit the probability maps and the computer to save acquired (and

self-processed) image data, as well as to record the timestamp and GPS coordinates of

the current location. The temperature of the DPU and the computer is also displayed,

prompting the user to shut down the instrument if operating conditions become too hot

for the electronics.

3 Field Experiment Methods

We deployed our instrument prototype on a field expedition in the second year of the

project. While the algorithm development and the bulk of the algorithm refinement oc-

curred in a laboratory setting (with artificial geological and lighting conditions), there

was no better test of performance and operational logistics than in a relevant envi-

ronment as may be seen on a future planetary rover. We’ve identified a number of

implementation bugs and design improvements that would have been hard to uncover
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FIG. 6. Southern edge of the Cima Volcanic Field. Located ˜25 km east-southeast of

Baker, CA in the Mojave National Preserve. Individual experiments were performed

at: (A) a north-facing wall, cut by erosion, exposing multiple volcanic layers; and (B)

the upper surface of the southern-most lava flow. Image modified after MapQuest.

in the laboratory.

3.1 Site

Our field tests took place at the southern edge of the Cima Volcanic Field (Figure 6).

This field is composed of a series of basaltic lava flows that lie in the Mojave Desert

region of Southern California, ranging in age from Late Miocene (6-7 Ma) in the north

to Late Pleistocene (20-500 ka) in the south [Dohrenwend et al., 1984, Wells et al.,

1995, Wilshire, 1992]. This entire region, averaging less than 1.5 cm of precipitation

a year, has been declared a Mars analogue site by the Terrestrial Analogs Panel of the

NSF-sponsored Decadal Survey [Farr, 2004]. More specifically, Cima was selected

for this particular study due to the great diversity of surfaces observed in these vol-

canics, including not only textures relevant to basaltic rocks, but also those applicable

to unconsolidated regolith and stratified sediments [McFadden et al., 1987,Wells et al.,

1985]. Individual field experiments to evaluate the real time performance of the sys-

tem were designed for the following locations: (A) a highly eroded wash containing

a north-facing wall that exposes multiple volcanic events interbedded with immature

paleosol layers (Figure 7) and (B) the upper surface of a volcanic lava flow that has de-

veloped a mature desert pavement interspersed with patches of clay and loose volcanic

clasts (Figure 8). The two sites were labeled as Site A and Site B, respectively. The

field experiment took place from April 29 to May 2, 2013, under clear skies and good

mid-day illumination.

We defined visually distinct textural classes in each scene. Site A exhibited at
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FIG. 7. Layered units at Site A. I: Channel Bed. II: Sorted volcanic gravel and lava

bombs. III: Volcanic angular gravel and blocks in poorly-sorted clay matrix. IV: Oxi-

dized clay. V: Massive volcanic blocks.

FIG. 8. Surfaces at Site B. I: Gravel and small clasts (< 64 mm in size). II: Clay

sediment. III: Basalt cobbles. IV: Basalt cobbles with iron oxide coating.
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FIG. 9. (Left, Center) Training labels for Site B. Here we trained the classifier us-

ing a single image. Red: B-I gravel (< 64 mm). Blue: B-II sediment. Green: B-III

basalt cobbles. Yellow: B-IV basalt cobbles with iron oxide coating. (Right) the in-

ferred probability map for surface class B-IV, basalt cobbles with iron oxide coatings,

produced automatically by the model after training. Higher intensity corresponds to a

higher probability that the surface belongs to the iron oxide class.

least five distinct layers (Figure 7): (A-I) the channel bed, consisting primarily of

bright sand; (A-II) a layer of volcanic angular gravel, well sorted and punctuated by

locally embedded lava bombs; (A-III) poorly sorted, angular volcanic gravel, including

boulder-sized clasts, suspended in a clay matrix; (A-IV) a thin and somewhat intermit-

tent layer of red oxidized clay; and (A-V) a layer of massive basalt material. We also

delineated several visually distinctive surface classes at Site B: (B-I) regions with pre-

dominant gravel-sized particles (< 64 mm in size), including local patches of desert

pavement; (B-II) surface covered by clay sediment; (B-III) basalt cobbles (> 64 mm

in size); and (B-IV) basalt cobbles with a red oxidized surface indicating differential

weathering or exposure to moisture.

3.2 Data Acquisition

We began each session by acquiring a single three-channel image and manually la-

beling examples of different classes in an image editing application (Figure 9). This

process produced a map of integer values delineating classified and unclassified areas.

We then trained the random forest on a field laptop computer, building the decision tree

from these training examples. This process typically required 10 to 15 minutes, with

the majority of the time used for manual image labeling. At the end of the training

process we uploaded the resulting random forest definition to a flash memory card and

inserted it into the instrument; all subsequent classifications used this trained model.

Contrary to some previous studies [Peralta et al., 2008] we did not experience signif-

icant problems from changing light conditions, and a single training session typically

provided consistent performance for the remainder of the trial. That we experienced

fewer illumination issues is understandable since our study differed from the Calderón

work in several significant ways. First, the Calderón study was conducted near the

winter solstice, with very low and fast-changing light angles. In contrast we operated

at favorable times of the day when the light remained relatively constant for the tar-
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gets during acquisition of both training and test images. Second, that previous work

focused on the problem of tracking individual features using Scale Invariant Feature

Transform (SIFT) descriptors, a challenging problem that relies on perfect matches

from one scene to the next. Tracking a specific feature is an all-or-nothing problem,

and a changing shadow can cause a lost track that cannot be recovered thereafter. SIFT

matching is known to be somewhat sensitive to lighting changes [Bauer et al., 2007].

Finally, we provided some additional illumination invariance by preprocessing each

image and converting it to a Hue Saturation Value (HSV) color representation.

After training, we acquired a sequence of images to cover the area of interest. For

Site A, we began approximately 12 meters from the exposed wall, with the camera at

0 degrees elevation (i.e., pointed at the horizon) We collected a single training exam-

ple from the extreme right side of the outcrop. We then panned the camera leftward,

collecting a sequence of four images of the entire visible face of the wall and forming

a mock rover panorama spanning approximately 120 degrees of azimuth. At Site B we

began with a training image with the tripod-mounted camera pointed down at approxi-

mately -45 degree elevation, observing a patch of terrain approximately 1 m wide. We

then moved the camera to the transect location, where we acquired a sequence of 16

images at 1 meter intervals with the camera facing the direction of motion. All image

processing occurred onboard the instrument; images were also saved to the instrument

computer for later analysis.

We evaluated the system’s performance by comparing the automatic classifications

to ground truth classifications made by a human. We generated these ground truth

labels in the same fashion as the training data, by manually labeling all regions of the

test images according to their surface type. Ambiguous areas that could be reasonably

classified as more than one class were left unlabeled and excluded from the analysis.

The classification maps would reflect any spatial correlations in the different terrain

types. We quantified the degree of spatial correlation by calculating the fractional

coverage of each class over the foreground of the transect images. Looking at just the

foreground ensures that the areas analyzed do not overlap from one frame to the next.

If the terrain types were not spatially correlated the resulting coverage fractions would

be Independent and Identically Distributed (IID) for each class. We test this for each

terrain type by treating the coverage fraction as a time series and applying a Durbin-

Watson test [Durbin and Watson, 1971]. This is a test for no autocorrelation based on

the residuals from a regression analysis. We favor the test for its simplicity, though it

does not explicitly account for the constraint that the mixing ratios must sum to one.

There exist Bayesian alternatives, such as hidden state time series representations, but

inference in such models can be challenging so we will favor to the simpler Durbin

Watson test here. Gravel and clast coverage has been found to be similar across larger

spatially-extended units [Wells et al., 1985] so we expect these classes to fail the no

autocorrelation test. The spatial distribution of iron oxide weathering is less clear in

visual inspection, so we do not have any prior expectation for that result.
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FIG. 10. Example of automatic image classification (Site A). Magenta: A-I Channel

Bed. Blue: A-II Sorted volcanic gravel. Yellow: B-III Volcanic angular gravel and

blocks in clay matrix. Green: A-IV: Oxidized clay. Class A-V (massive volcanic

blocks) is excluded.

4 Field Experiment Results

We first consider results at Site A. Figure 10 shows a typical classification result as-

signing each surface class a different color. The system correctly interprets this scene

as having contiguous horizontal layers. There is some slight mixing between iron oxide

and clay classes, but the border of the sorted gravel layer is well localized. For clarity

we have removed classification labels above the iron oxide layer and below the channel

bed. The massive basalt class (A-V) was never classified accurately (for reasons that

we will discuss below); after initial attempts to retrieve it we finally excluded it from

our analysis.

Figure 11 quantifies performance at Site A using a Receiver Operating Character-

istic (ROC) curve. The ROC curve treats each class as a one-vs-many classification

problem, showing true positive and false positive rates that can be achieved for dif-

ferent probability thresholds. The operator can modify acceptance thresholds to move

along this curve; for example, one can reduce the number of false positives by requiring

classifications to be very certain. However, this will find fewer examples of each class.

Conversely, lower probability thresholds result in more false positives. The ROC curve

characterizes this tradeoff. Curves in the upper left of the plot suggest powerful clas-

sifiers with desirable performance profiles. These curves were produced by averaging

the ROC performance from all images in the dataset.

The ROC curve for site A shows near-perfect performance on three of five classes;

the system recovers 90% of classes A-I, A-III, and A-IV with negligible false posi-

tives. We are mainly interested in the leftmost portion of the ROC curve, since this is

appropriate for a rover that collects just a few followup observations of high probability

targets. The performance demonstrated at site A would allow a rover to perform rep-

resentative sampling — a single followup measurement of each surface — with very

high confidence. Class A-II is the most difficult, and the rate of false positives becomes

non-negligible if one wishes to capture the entire surface, as the dark gravel area grades
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FIG. 11. ROC curve for Site A. The upper left corner represents ideal performance,

detecting 100% of true positives with no false alarms.
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Predicted

A-I A-II A-III A-IV

Actual

A-I Sediment 0.796 0.204 0.000 0.000

A-II Gravel 0.031 0.965 0.004 0.000

A-III Clay matrix 0.000 0.000 0.982 0.018

A-IV Iron oxide 0.000 0.000 0.003 0.997

Table 1. Confusion matrix for classes at Site A. Bold entries show the precision of

each automatic class label, e.g. the fraction that are correctly assigned.

FIG. 12. Example of Cima image classification (Site B). Red: B-I gravel (< 64 mm).

Blue: B-II sediment. Green: B-III basalt cobbles. Yellow: B-IV basalt cobbles with

iron oxide coating.

into the shadowed sediment directly below it. Table 1 shows confusion matrices cal-

culated over all pixels in the dataset. This also shows some shadow-induced confusion

between sediment and gravel classes. We have normalized each entry, dividing by the

number of true examples of that class. Thus the rows of the confusion matrices sum to

one, but the columns in general do not.

Figure 12 provides a typical classification result for Site B, which captures both

the size and distribution of rocks as well as the presence or absence of iron oxide

coatings. Figure 13 shows the ROC curve calculated over all images at Site B. The

system is highly effective at mapping the fundamental basalt/sediment distinction, and

less accurate for the iron oxide and gravel classes. Again, this level of accuracy is

sufficient for representative sampling because it is possible to select high-probability

pixels that guarantee a negligible false positive rate. Table 2 shows a confusion matrix.

Overall performance is good but there are some classes that are occasionally confused.

For instance, the distinction between gravel and cobbles is less obvious in the upper

portion of the images since the camera sees little of the sediment substrate at extreme

aspect ratios.

However, most mislabelings represent the intrinsic subjectivity of the classes at Site

B rather than difficulty in recognizing visual appearance. The distinction between sed-

iment with small, sparsely scattered rocks and the gravel is somewhat blurred. Often
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FIG. 13. ROC curve Site B. The best performance is in the upper left corner.
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Predicted

B-I B-II B-III B-IV

Actual

B-I Basalt gravel 0.807 0.182 0.010 0.001

B-II Sediment 0.005 0.993 0.001 0.001

B-III Basalt cobbles 0.023 0.013 0.961 0.003

B-IV Iron oxide 0.000 0.516 0.005 0.479

Table 2. Confusion matrix for classes at Site B. Bold entries show the precision of

each automatic class label.

isolated gravel particles are justifiably counted as belonging to the surrounding sed-

iment unit. The iron oxide class performs worst, with approximately half of the area

labeled as basalt cobbles. This also reflects some inherent subjectivity since the two are

simply endmembers of a distribution of coatings with different degrees of weathering

and iron oxide coatings. The fact that approximately half of these pixels are mislabeled

is compatible with the good precision evidenced in the ROC curve: there are many

fewer iron oxide pixels than basalt, so one can ignore a large proportion of them with-

out significantly increasing the overall false positive rate. That places some rare iron

oxide within the more mundane background class, which is not a problem for rovers

attempting to use this information for instrument targeting - operators can use a high

probability threshold to ensure any iron oxide pixels they do select are likely to be real.

Table 3 shows the fractional coverage of each terrain type for the 16 images in

the Cima sequence, and the p-value of the Durbin-Watson test for no autocorrelation

of the time series. Low p values for the sediment, basalt, and gravel class suggest

that these three units are not uncorrelated. This is appropriate because these three

classes represent spatially extended phenomena on meter scales, while the iron oxide

class represents an anomalous weathering condition that occurs intermittently on the

surfaces of individual rocks. Figure 14 displays the same information as a bar chart.

Figure 15 shows two extreme examples from the sequence: Image 2 (Left) which is

estimated to have the smallest fraction of sediment, and Image 12 (Right) which has

the largest. We conclude that spatial trends in the mapped sequence are consistent with

the mesoscale spatial correlations expected for these terrain types.

5 Discussion

The experiments described above represent a challenging test of automated geologic

image analysis. They evaluated the instrument in true field conditions with just a single

training episode and no effort made to re-tune instrument parameters on the fly. These

tests involved large contiguous mosaics of both vertical and horizontal surfaces, both

with and without obvious stratigraphy. To our knowledge, it is the first time automated

geologic image analysis of this kind has been demonstrated in real time instrument

hardware. We will continue to refine the instrument, methods, and training sets, but

this work provides an initial test of system performance and a bound on the errors that

one might expect in an operational setting.
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FIG. 14. Coverage fractions for each terrain type, for each image in the site B traverse

sequence.

FIG. 15. Transect image 2, classified as having the smallest sediment fraction (Left)

and transect image 12 having the largest fractional area of estimated sediment (Right)
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Image B-I B-II B-III B-IV

1 0.47 0.27 0.21 0.05

2 0.60 0.04 0.35 0.01

3 0.53 0.06 0.41 0.01

4 0.55 0.07 0.38 0.01

5 0.54 0.11 0.33 0.02

6 0.37 0.25 0.36 0.02

7 0.45 0.26 0.27 0.02

8 0.35 0.43 0.20 0.01

9 0.18 0.59 0.21 0.02

10 0.33 0.43 0.22 0.02

11 0.27 0.56 0.14 0.02

12 0.20 0.60 0.17 0.03

13 0.46 0.33 0.20 0.02

14 0.53 0.25 0.19 0.03

15 0.44 0.40 0.13 0.03

16 0.34 0.50 0.15 0.01

p-value 0.011 0.002 0.008 0.240

Table 3. Fractional coverage of each surface type in each transect image, and p values

of a Durbin-Watson test for autocorrelation in each class.

The overall result is encouraging, though we found a wide variation in mapping

accuracy across different surface types. Certain distinctions were quite simple to teach

the classifier, such as the difference between differently-colored volcanic strata (Site

A) or the obvious visual distinction between sediment and rock (Site B). Accuracy

rates for pure, unambiguous classes are typically above 95% representing a high like-

lihood of acquiring good targeted data regardless of the class abundance. This level

of performance is already sufficient to improve rover exploration efficiency over sta-

tus quo methods: rock detection is important for instrument targeting [Estlin et al.,

2012] while layer detection is useful for a range of instrument placement and mapping

operations [Gulick et al., 2001, Wagstaff et al., 2013]. In some cases, the automatic

classification outperformed the initial human labeling, as in the iron oxide class at Site

A. Here small image regions labeled as iron oxide led to the discovery of isolated

patches of this class outside the main layer.

These tests also hint at more challenging classes, which may benefit from special

pre-processing or post-processing. For example, the massive block class (A-V) is vi-

sually distinctive when looking at the entire rock face, but the instrument must make a

classification decision based only on the local information near each pixel. Local sur-

face textures provided insufficient information to reliably delineate the class. The iron

oxide coatings on rocks at Site B are another challenging scenario. These targets were

small and scattered, so that a labeling which did not correctly identify the perimeter of

each iron oxide surface would incur a high penalty in terms of total pixel area. Even

with this caveat, instrument targeting with these classifications would significantly out-

perform blind targeting when the features at a new locale are not known in advance.
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But the performance variation by class means that operators seeking maximum reli-

ability should define the desired targeting behavior in terms of simple and localized

visual patterns.

The rare classes highlight the related and important issue of class imbalance: our

baseline classifier does not typically take the relative abundance of each class into ac-

count, but the true probability may shift as the predominance of classes change. This is

easy to remedy; in the case of class imbalance one could apply an additional informed

prior P(y) using Bayes’ rule. This would amount to scaling each output probability by

the relative abundance of each class. A similar scaling can capture different misclassi-

fication costs, leading to a Bayes’ optimal classification with maximum total utility. By

applying these simple postprocessing operations, a single generic random forest could

be applied for many different scenarios.

6 Future Work

There are two principal avenues for future work: algorithm improvements and hard-

ware integration. We plan to improve classification performance using more sophisti-

cated pre-processing and a richer set of pixel attributes. Local descriptors [Dalal and

Triggs, 2005] or oriented bar filters [Wagstaff et al., 2013] could improve performance,

though their computational expense would probably demand specialized hardware sup-

port. We will also consider ways to address the challenge of spatial context, evidenced

in class A-V where non-local information is required. Candidate solutions include in-

put attributes that capture a larger spatial context, or class prior probabilities based on

image location [Crandall et al., 2005].

We are also investigating further hardware upgrades in preparation for our next

field expedition scheduled for summer 2014. We are currently adding the second Hi-

tachi camera and porting the algorithm into the FPGA fabric. The addition of the sec-

ond camera will enable stereo vision processing on the computer. The resulting range

estimates will be used to select appropriate classifiers for each part of the scene. In

porting the algorithm from the embedded PowerPC processor inside the FPGA to the

surrounding fabric, we hope to achieve a 1 Hz processing rate by performing multiple

per-pixel decision tree evaluations in parallel. We will also make the instrument more

convenient to use by extending the WiFi range and reducing Ethernet data drops.

7 Conclusions

This work provides several unique new contributions to the field. First, we have taken

random forest algorithms recently demonstrated for Mars surface geology [Wagstaff

et al., 2013] and applied them to real-time geologic surface analysis in a field environ-

ment. This demonstrates that the same basic algorithm applies to both scenarios and

suggests a potential for a wide range of different rover science autonomy tasks. Unlike

previous tests, which have generally relied on traditional computing platforms, we have

implemented our classifier system directly in embedded instrument hardware. The re-

sulting system was evaluated at two distinct regions in the Cima Volcanic fields, where
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it successfully classified visually-distinctive surface patterns using color and texture

cues. Further work will continue to refine pre-processing, the algorithm itself, and the

instrument platform.
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